
The Zombie Roundup:
Understanding, Detecting, and Disrupting Botnets

Evan Cooke,* Farnam Jahanian,*† Danny McPherson†

*Electrical Engineering and Computer Science Department †Arbor Networks
University of Michigan danny@arbor.net

{emcooke, farnam}@umich.edu

Abstract

Global Internet threats are undergoing a profound
transformation from attacks designed solely to disable
infrastructure to those that also target people and or-
ganizations. Behind these new attacks is a large pool
of compromised hosts sitting in homes, schools, busi-
nesses, and governments around the world. These sys-
tems are infected with a bot that communicates with a
bot controller and other bots to form what is commonly
referred to as a zombie army or botnet. Botnets are a
very real and quickly evolving problem that is still not
well understood or studied. In this paper we outline the
origins and structure of bots and botnets and use data
from the operator community, the Internet Motion Sen-
sor project, and a honeypot experiment to illustrate the
botnet problem today. We then study the effectiveness of
detecting botnets by directly monitoring IRC communi-
cation or other command and control activity and show
a more comprehensive approach is required. We con-
clude by describing a system to detect botnets that utilize
advanced command and control systems by correlating
secondary detection data from multiple sources.

1 Introduction
Global Internet threats are undergoing a profound trans-
formation from attacks designed solely to disable in-
frastructure to those that also target people and orga-
nizations. This frightening new class of attacks di-
rectly impacts the day-to-day lives of millions of people
and endangers businesses around the world. For exam-
ple, new attacks steal personal information that can be
used to damage reputations or lead to significant finan-
cial losses. Current mitigation techniques focus on the
symptoms of the problem, filtering the spam, hardening
web browsers, or building applications that warn against
phishing tricks. While tools such as these are important,
it is also critical to disrupt and dismantle the infrastruc-
ture used to perpetrate the attacks.

At the center of these threats is a large pool of compro-
mised hosts sitting in homes, schools, businesses, and
governments around the world. These systems are in-
fected with a bot that communicates with a bot controller

and other bots to form what is commonly referred to as a
zombie army or botnet. A bot can be differentiated from
other threats by a communication channel to a controller.
Many bots found in the the wild today are a hybrid of
previous threats combined with a communication sys-
tem. They can propagate like worms, hide from detec-
tion like many viruses, and include attack methods from
toolkits.

The magnitude of the botnet problem is just begin-
ning to be carefully documented. According to a recent
report, the number of new bots observed each day rose
from less than 2,000 to more than 30,000 over the first
six months of 2004 [7]. The total number of bot infected
systems has been measured to be between 800,000 to
900,000 and CERT has described botnets with more than
100,000 members [12, 6].

Botnets are a very real and quickly evolving problem
that is still not well understood. In this paper, we outline
the problem and investigate methods of stopping bots.
We identify three approaches for handling botnets: (1)
prevent systems from being infected, (2) directly detect
command and control communication among bots and
between bots and controllers, and, (3) detect the sec-
ondary features of a bot infection such as propagation
or attacks.

The first approach is to prevent systems from being in-
fected. There are a range of existing techniques, includ-
ing anti-virus software, firewalls, and automatic patch-
ing.

The second approach is to directly detect botnet com-
mand and control traffic. Botnets today are often con-
trolled using Internet Relay Chat (IRC) and one possi-
ble method of detecting IRC-based botnets is to monitor
TCP port 6667 which is the standard port used for IRC
traffic [9]. One could also look for non-human behav-
ioral characteristics in traffic, or even build IRC server
scanners to identify potential botnets [17, 19].

We argue there is also a third approach that detects
botnets by identifying secondary features of a bot infec-
tion such as propagation or attack behavior. Rather than
directly attempting to find command and control traffic,
the key to this approach is the correlation of data from

different sources to locate bots and discover command
and control connections.

In this paper we investigate the second and third ap-
proach for stopping botnets. The problem with the first
approach is that preventing all systems on the Internet
from being infected is nearly an impossible challenge.
As a result, there will be large pools of vulnerable sys-
tems connected to the Internet for many years to come.

The paper begins by describing how the botnet prob-
lem is evolving by tracing the origins of bots. We then
demonstrate the size of the botnet problem using evi-
dence from the operator community, the Internet Mo-
tion Sensor project [2], and experimental data collected
from a honeypot experiment. With this information, we
examine current IRC-based botnet communication and
detection strategies. Next, we show how finding bot-
nets by detecting command and control messages will
become less effective as attackers move to other commu-
nication topologies and obfuscate their communications.
We conclude by describing a system to identify botnets
by correlating secondary detection data with host-based
forensic information.

2 Bots
Studying the evolution of bots and botnets provides in-
sight into their current capabilities. One of the origi-
nal uses of computer bots was to assist in Internet Re-
lay Chat (IRC) channel management [16]. IRC is a
chat system that provides one-to-one and one-to-many
instant messaging over the Internet. Users can join a
named channel on an IRC network and communicate
with groups of other users. Administering busy chat
channels can be time consuming, and so channel opera-
tors created bots to help manage the operation of popular
channels. One of the first bots was Eggdrop, which was
written in 1993 to assist channel operators [1].

In time, IRC bots with more nefarious purposes
emerged. The goal of these bots was to attack other
IRC users and IRC servers. These attacks often involved
flooding the target with packets (i.e., DoS attacks). The
use of bots helped to hide the attacker because the at-
tack packets were sent from the bot rather than directly
from the attacker (assuming a non-spoofed attack). This
new level of indirection also allowed multiple comput-
ers to be grouped together to perform distributed attacks
(DDoS) and bring down bigger targets.

Larger targets required more bots, and so attackers
looked for methods to recruit new members. Since very
few users would agree to have their computers utilized
for conducting packet floods, attackers used trojaned
files and other surreptitious methods to infect other com-
puters. For example, bots such as SubSeven Bot, Bionet
Bot, Attack Bot, GTBot, EvilBot, and Slackbot are of-
ten simple to install remotely or hide in potentially legit-

imate files [10].
As the economic incentives to use bots for DoS extor-

tion, spam, phishing and other attacks have emerged, the
bot infection process has become more automated. For
example, SDBot [11] (also known as rBot) can propa-
gate using many different mechanisms such as open file
shares, p2p networks, backdoors left by previous worms,
and exploits of common Windows vulnerabilities such
as WEBDAV [14], DCOM RPC [13], and LSASS [15].
The attack and communication capabilities of modern
bots have also become extremely advanced. For exam-
ple, Agobot [4] (also know as Phatbot or Gaobot) has
a large range of built-in attack capabilities including de-
nial of service attacks, a proxy for spam, GRE tunneling,
and password sniffers.

In many respects, the bots found in the the wild today
are a hybrid of many previous threats integrated with a
command and control system. They can propagate like
worms, hide from detection like many viruses, and in-
clude attack methods from toolkits. Of even greater con-
cern, the construction of bots is now very much a coop-
erative effort. An example is the source code of SDBot
which contains comments from many different authors.
The result is a proliferation of different bot variants. As
of August 2004, SDBot has been reported to have more
than 4,000 variants [11].

3 Botnet Measurements
As bots have evolved, evidence has emerged suggesting
the number of bot infection has grown dramatically. In
this section we show the growing problem from the per-
spective of the operator community, using data from the
Internet Motion Sensor project, and using data generated
by a honeypot experiment.

3.1 Operator Experiences
As criminals update their tools for the digital age, they
have turned to bots as a weapon of choice. Those that run
digital networks are caught between the attackers and
their targets, but also have a unique perspective on the
situation.

To better understand bot behavior, we informally in-
terviewed five major backbone operators at Tier-1 and
Tier-2 providers. They indicated that the botnet prob-
lem is very real, and something they combat frequently.
They also provided interesting insight into current botnet
trends.

While the number of botnets appears to be increasing,
the number of bots in each botnet is actually dropping. A
few years ago, botnets with 80k to 140k members were
observed [6]. Today, botnets with a few hundred to a few
thousands hosts are common. There are several factors
that may be driving this trend. First, smaller botnets are
more difficult to detect and may be easier to sell or rent.

Apr-2004 Jun-2004 Aug-2004 Oct-2004 Dec-2004 Feb-2005
0

20000

40000

60000

80000

100000

Pa
ck

et
s P

er
 D

ay

TCP port 2745 (Bagel)
TCP port 3127 (MyDoom)
TCP port 5554 (Sasser FTP)
TCP port 9898 (Dabber/Doomran)
TCP port 27374 (SubSeven)

Activity on worm/trojan backdoor ports
Over one year observed at /24 IMS Sensor

Figure 1: Backdoor activity over one year as observed
by a /24 IMS sensor

Another major consideration is the additional firepower
of to each bot due to the proliferation of DSL, cable, and
other broadband access technologies. For example, only
a few hundred hosts having a cable broadband Internet
connection with an upstream bandwidth of 1Mbps can
saturate a high-speed OC3 (155 Mbps) Internet link used
by large businesses.

What is clear is that botnets have become a busi-
ness opportunity, and the characteristics of botnets to-
day often correspond to economic considerations. For
example, botnet controllers have been observed building
botnets-to-order. These custom botnets might consist of
systems within educational networks or, more frighten-
ingly, of systems from government networks.

3.2 Botnet Propagation

Accurately measuring the number of active botnets is
very difficult because there are few overt characteris-
tics to identify. One method of tracking bots is to look
for propagation activity. The mechanisms used by bots
to spread vary greatly, but one major mechanism is to
scan for vulnerabilities. These weaknesses can be in pro-
duction software or in other malware. For example, the
Bagel and MyDoom worms left backdoors that could be
used to run arbitrary code. These backdoors are known
infection vectors for bot activity. Starting in April 2004,
the Internet Motion Sensor project (IMS) observed a
large uptick in activity on these backdoors. The IMS
is a network of sensors that monitors 60 unused address
blocks at 19 diverse organizations [2]. Figure 1 shows
the number of packets received at well-known backdoor
ports left by worms and trojans over a one year period at
a /24 (256 address wide) IMS sensor. Figure 1 demon-
strates the large amount of continued activity on these
port.

3.3 Bot Honeypot
To get a better understanding of bots firsthand, we set
up an experiment to measure botnets on a real network.
The idea was very simple. If botnets are such a serious
problem, then a vulnerable system should be quickly re-
cruited into a botnet when placed on the Internet [5, 19]

The experimental setup was as follows. We placed a
new system with a fresh installation of Windows 2000
and XP without any service packs (i.e. a honeypot) be-
hind a transparent proxy device (FreeBSD bridge). The
proxy performed three operations: (1) it rate limited traf-
fic in and out to 12KB/s; (2) it disallowed access to sys-
tems on the local network; and (3) it logged all traffic
to and from the vulnerable system. The proxy was care-
fully monitored to ensure that the honeypot did not per-
form any illicit activities such as sending spam or partic-
ipating in attacks.

We performed 12 experimental runs in which each
run was typically 12-72 hours long and traces typically
topped 100MB of activity. The traces contained repeated
compromises achieved using a wide range of old vulner-
abilities, including the DCOM RPC [13] vulnerability
and the LSASS [15] vulnerability. The honeypot was
often recruited in multiple botnets at the same time.

This experiment suggests a widespread bot problem.
Over the 12 runs, only 2 included an infection from
a worm (i.e. malware without command and control).
While this single deployment may not be representative
of other networks, when combined with the experiences
of the operational community and the IMS data, the evi-
dence suggests a significant evolution in the threat land-
scape has already occurred.

4 Botnets Today: Detecting Command
and Control

To combat the growing problem of bots, we identified
two approaches for detecting botnets: detect the com-
mand and control communication, or detect the sec-
ondary features of a bot infection. In this section we
study methods of detecting botnets by directly locating
command and control traffic.

4.1 IRC-based Command and Control
A bot must communicate with a controller to receive
commands or send back information. One method for
establishing a communication channel is to connect di-
rectly to the controller. The problem is that this con-
nection could compromise the controller’s location. In-
stead, the bot controller can use a proxy such as a public
message drop point (e.g., a well-known message board).
However, because websites and other drop points can
introduce significant communication latency, a more ac-
tive approach is desirable. A well-known public ex-

Attack

 A
tta

ck
Com

man
d

Controller Control Channel

Victim

Zombie

IRC
Server

Zombie

IRC
Server

IRC
Server

Normal
User

Attack

Figure 2: IRC-based botnet DDoS Attack

change point that enables virtually instant communica-
tion is IRC.

IRC provides a common protocol that is widely de-
ployed across the Internet and has a simple text-based
command syntax. There are also a large number of
existing IRC networks that can be used as public ex-
change points. In addition, most IRC networks lack
any strong authentication, and a number of tools to pro-
vide anonymity on IRC networks are available. Thus,
IRC provides a simple, low-latency, widely available,
and anonymous command and control channel for botnet
communication.

An IRC network is composed of one or more IRC
servers as depicted in Figure 2. In a typical botnet, each
bot connects to a public IRC network or a hidden IRC
server on another compromised system. The bot then
enters a named channel and can receive commands di-
rectly from a controller or even from sequences encoded
into the title of the channel. The bot and any other bots
in the same channel can then be instructed to attack as
shown in Figure 2.

4.2 IRC-based Botnet Detection
Today, most known bots use IRC as a communication
protocol, and there are several characteristics of IRC that
can be leveraged to detect bots. In this section, we de-
scribe methods of detecting IRC-based botnets.

One of the simplest methods of detecting IRC-based
botnets is to offramp traffic from a live network on
known IRC ports (e.g., TCP port 6667) and then inspect
the payloads for strings that match known botnet com-
mands. Unfortunately, botnets can run on non-standard
ports. We detected at least three such botnets running on
high-numbered ports in our honeypot experiment.

Another method is to look for behavioral characteris-
tics of bots. One study found that bots on IRC were idle

most of the time and would respond faster than a human
upon receiving a command. The system they designed
looked for these characteristics in Netflow traffic and at-
tempted to tag certain connections as potential bots [17].
The approach was successful in detecting idle IRC ac-
tivity but suffered from a high false positive rate.

Given problems such as false positives on live net-
works, another approach is to use a non-productive re-
source or honeypot. One group set up a vulnerable sys-
tem and waited for it to be infected with a bot. They
then located outgoing connections to IRC networks and
used their own bot to connect back and profile the IRC
server [19]. However, they did not take the next step and
develop a detection system based on the technique.

Rather than connecting to the IRC server directly, an-
other approach is to use a honeypot to catch the bot
and then look for characteristics of command and con-
trol traffic in the outgoing connections. Using the data
collected in our honeypot experiment described in Sec-
tion 3, we attempted to isolate behavioral invariants in
botnet communication. We located all successful out-
going TCP connections and verified that they were all
directly related to command and control activity by in-
specting the payloads. There were a wide range of in-
teresting behaviors, including connections from the bot
to search engines to locate and use bandwidth testers,
downloading posts from popular message boards to get
server addresses, and the transmission of comprehensive
host profiles to other servers. These profiles included
detailed information on the operating system, host band-
width, users, passwords, file shares, filenames and per-
missions for all files, and a number of other minute de-
tails about the infected host.

We then analyzed all successful outgoing connections
and looked for specific characteristics that could be used
to identify botnet command and control traffic. The re-
sults suggested that there are no simple characteristics
of the communication channels themselves that can be
used for detection. For example, the length of the outgo-
ing connections varied widely, with certain connections
lasting more then 9 hours and others less than a second.
The number of bytes transfered per connection also var-
ied widely even when we separated out IRC communi-
cation from other command and control activity.

The results from our analysis nor the results from
previous bot detection efforts has revealed any simple
connection-based invariants useful for network detec-
tion. One might inspect every payload of every packet
however this is currently very costly on high through-
put networks. More importantly, attackers can make
small modifications that make detection nearly impos-
sible. For example, encrypting traffic, masking flow be-
havior with random noise, and even switching to differ-
ent communication topologies can make detection im-

Topology Design Complexity Detectability Message Latency Survivability
Centralized Low Medium Low Low

Peer-to-Peer Medium Low Medium Medium
Random Low High High High

Table 1: Command and Control Topologies
mensely more challenging (versions of AgoBot with
SSL encryption have been reported). In the end, any
approach that relies on directly detecting command and
control traffic can be defeated by changing the mode or
behavior of the communication.

5 Botnets of Tomorrow
The difficulty in capturing bot command and control il-
lustrates the need for a more robust detection approach.
In this section we investigate possible advanced bot
communication topologies and then present a detection
method that gets around these difficulties by identifying
other characteristics of a bot infection.

5.1 Command and Control Models
To explore the implications of various bot communica-
tion methods, we identify three possible topologies and
investigate their associated benefits and weaknesses as
shown in Table 1.

Centralized: A centralized topology is character-
ized by a central point that forwards messages between
clients. Messages sent in a centralized system tend to
have low latency as they only need to transit a few well-
known hops. From the perspective of an attacker, cen-
tralized systems have two major weaknesses: they can to
be easier to detect since many clients connect the same
point, and the discovery of the central location can com-
promise the whole system.

P2P: Peer-to-peer (p2p) botnet communication has
several important advantages over centralized networks.
First, a p2p communication system is much harder to
disrupt. This means that the compromise of a single
bot does not necessarily mean the loss of the entire
botnet. However, the design of p2p systems are more
complex and there are typically no guarantees on mes-
sage delivery or latency. A structured p2p location ser-
vice such as Chord [18] could be used, but such a sys-
tem might also reveal compromising information about
other nodes. Existing p2p anonymity networks could be
adapted, however there would be additional processing
and latency overhead [3].

Random: A botnet communication system could also
be based on the principle that no single bot knows about
any more than one other bot. In this topology a bot or
controller that wanted to send a message would encrypt
it and then randomly scan the Internet and pass along
the message when it detected another bot. The design of

such a system would be relatively simple and the detec-
tion of a single bot would never compromise the full bot-
net. However, the message latency would be extremely
high, with no guarantee of delivery. In addition, the ran-
dom probing behavior could be detectable.

The three topologies described above can be viewed
as a spectrum of information release. That is, they de-
scribe the maximum number of nodes any one node will
know about at one time. In a central topology the server
knows about all nodes, while in a random topology no
node ever knows more than one other node. Each topol-
ogy has specific advantages and drawbacks, and the op-
timal topology for a given botnet might exist somewhere
between the extremes. Many existing communication
systems may fall somewhere in between. IRC could be
classified as a centralized system, although the server-to-
server and client-to-client communication is more like
peer-to-peer systems.

The implication of this analysis is that command and
control communication is extremely flexible, and a bot
could use any number of different channels and differ-
ent topologies to communicate. Thus, it is difficult for
any general botnet detection scheme to rely on specific
communication characteristics.

5.2 Advanced Botnet Detection
In the end, all methods that rely on particular commu-
nication protocols or topologies like IRC will lose ef-
fectiveness as attackers modify their tools. For these
reasons, we argue that long term efforts to stop bot-
nets should focus on other methods. One approach is
to combine data from existing proven detection systems
to identify suspect activity.

Such a system could use data from host detectors, net-
work detectors, or a combination of both. The detector
could monitor a production resource or a non-productive
resource (i.e. honeypot). A key requirement of this ap-
proach is the ability to aggregate and summarize data
from heterogeneous sources. For example, a system
could use a network detector to provide an alert on noisy
behaviors such as scanning or DoS activity. The alert
could then be traced back to the host that initiated the ac-
tivity. Using a host-based monitor, the packets could be
correlated with the sending process, and the bot program
identified [8]. Finally, using the the same host monitor,
other other suspected command and control channels re-
lated to that process could be identified.

There are clearly a number of challenges in realiz-
ing this approach. As a first step, we intend to identify
the different available sources of detection data and then
evaluate effective trace-back mechanisms on the host.
Although more complicated than just identifying com-
mand and control messages, we believe a multi-detector
correlational approach will provide a more robust and
longer-term botnet detection system.

5.3 Challenges of Botnet Disruption
Detection is not the only step involved in stopping a bot-
net. Given the detection data, an action plan to disrupt
the botnet must be formulated. We now describe a sum-
mary of the challenges involved in botnet disruption.
When a bot is detected, there are two immediate miti-
gation goals: taking down the bot and taking down the
botnet. A bot is different from a worm or virus because
it is a member of a larger botnet and there is significant
value in taking down the whole botnet rather than just
a single node. The process is analogous to law enforce-
ment efforts to capture a gang rather than a single person.

The capture of a single gang member can provide in-
formation about a whole gang, and so it may be useful
to let that person operate for a time to inform on other
members. For bots today, that process is straightfor-
ward because many bots communicate with a single IRC
server. However, as bots evolve it is likely that it will be-
come increasingly difficult to identify other members of
a botnet.

Continuing the law enforcement analogy, gangs that
cross international boundaries require the coordination
of law enforcement in different countries. Similarly, bot-
nets can be highly distributed, with nodes in hundreds
of networks located in many different countries. Stop-
ping botnets will require a significant level of coopera-
tion among providers and some level of automation.

6 Conclusion
This paper has outlined the origins and structure of bots
and botnets, and shown how they have evolved to be-
come potent weapons. We studied methods of detecting
IRC-based bots and demonstrated three general com-
mand and control topologies to illustrate the difficulty
of focusing detection efforts on command and control
traffic. Based on this understanding, we described an
approach to detect botnets by correlating secondary de-
tection information to pinpoint bots and botnet commu-
nication.

The threat landscape on the Internet is undergoing
an important transformation, and researchers and practi-
tioners need to adapt to the new covert, distributed, and
global nature of the threat. This requires collaboration
among researchers to devise hybrid data analysis tech-
niques and collaboration between network operators to

more quickly and automatically act on threats. Botnets
are a global problem that affects the entire Internet com-
munity and requires a community effort to stop them.

Acknowledgments
This work was supported in part by the Advanced Research
and Development Activity (ARDA). The Internet Motion Sen-
sor project is supported by the Department of Homeland Secu-
rity, Intel, and Cisco. Many thanks to David Watson, Michael
Bailey, Jose Nazario, Tim Battles, Nicolas Fischbach, Chris
Morrow, and Rob Thomas for helpful comments and feedback.
We would also like to thank all the IMS participants.

References
[1] Eggdrop: Open source IRC bot. http://www.eggheads.org/,

1993.
[2] Michael Bailey, Evan Cooke, Farnam Jahanian, Jose Nazario,

and David Watson. The Internet Motion Sensor: A distributed
blackhole monitoring system. In Proceedings of Network and
Distributed System Security Symposium (NDSS ’05), San Diego,
CA, February 2005.

[3] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W.
Hong. Freenet: A distributed anonymous information stor-
age and retrieval system. Lecture Notes in Computer Science,
2009:46+, 2001.

[4] Computer Associates. Win32.Agobot. http://www3.ca.com/
securityadvisor/virusinfo/virus.aspx?id=37776, July
2004.

[5] Nicolas Fischbach. Router forensics DDoS/worms update.
http://www.securite.org/, 2003.

[6] Allen Householder and Roman Danyliw. CERT Advisory CA-
2003-08 Increased Activity Targeting Windows Shares. 2003.

[7] Kim Legelis, Symantec Corporation. Combating online fraud:
An update. http://information-integrity.com/article.
cfm?articleid=100, 2005.

[8] Samuel T. King, Z. Morley Mao, Dominic G. Lucchetti, and
Peter M. Chen. Enriching intrusion alerts through multi-host
causality. In Proceedings of Network and Distributed System Se-
curity Symposium (NDSS ’05), San Diego, CA, February 2005.

[9] John Kristoff. Botnets. 32nd Meeting of the North American
Network Operators Group, October 2004.

[10] LockDown Corp. Bots, Drones, Zombies, Worms and other
things that go bump in the night. http://swatit.org/bots/,
2003.

[11] McAfee. W32/Sdbot.worm. http://vil.nai.com/vil/
content/v 100454.htm, April 2003.

[12] Laurianne McLaughlin. Bot software spreads, causes new wor-
ries. IEEE Distributed Systems Online, 5(6), June 2004.

[13] Microsoft. DCOM RPC vulnerability. http://www.
microsoft.com/technet/security/bulletin/MS03-026.
mspx, July 2003.

[14] Microsoft. WEBDAV vulnerability. http://www.microsoft.
com/technet/security/bulletin/MS03-007.mspx, March
2003.

[15] Microsoft. LSASS vulnerability. http://www.microsoft.
com/technet/security/bulletin/MS04-011.mspx, April
2004.

[16] J. Oikarinen and D. Reed. RFC 1459: Internet Relay Chat Pro-
tocol, 1993.

[17] Stéphane Racine. Analysis of Internet Relay Chat Usage by
DDoS Zombies. Master’s thesis, Swiss Federal Institute of Tech-
nology Zurich, April 2004.

[18] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM ’01: Proceed-
ings of the 2001 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications, pages
149–160. ACM Press, 2001.

[19] The Honeynet Project. Know your enemy: Tracking botnets.
http://www.honeynet.org/papers/bots/, March 2005.

